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Fibonacci and Golden Ratio Formulae

Here are almost 200 formula involving the Fibonacci numbers and the golden ratio together with the
Lucas numbers and the General Fibonacci series (the G series). This forms a major reference page for
Ron Knott's Fibonacci Web site (http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/) where there
are many more details and explanations with applications, puzzles and investigations aimed at secondary
school students and teachers as well as interested mathematical enthusiasts.
Note that it is easy to search for a named formula on this page since it is an HTML page and the
formulae are not images. In your browser main menu, under the Edit menu look for Find... and type
Vajda-N or Dunlap-N for the relevant formula.
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Definitions and Notation

Beware of different golden ratio symbols used by different authors! 
At this web site Phi is 1.618033... and phi is 0.618033.. but Vajda (see below) and Dunlap (see below)
use a symbol for -0.618033.. . 
Where a formula below (or a simple re-arrangement of it) occurs in either Vajda or Dunlap's book, the
reference number they use is given. Dunlap's formulae are listed in his Appendix A3. Hoggatt's formula
are from his "Fibonacci and Lucas Numbers" booklet. Full bibliographic details are at the end of this page.

As used 
here Vajda Dunlap Description

floor(x) [x]
trunc(x), not 
used for x<0

the nearest integer ≤ x.
When x>0, this is "the integer part of x" or "truncate x" i.e. delete any fractional
part after the decimal point. 
3=floor(3)=floor(3.1)=floor(3.9), -4=floor(-4)=floor(-3.1)=floor(-3.9)

round(x) [ x + 
1

 ]
2

trunc(x+1/2)

the nearest integer to x, equivalent to trunc(x+0.5)
3=round(3)=round(3.1), 4=round(3.9), 
-4=round(-4)=round(-3.9), -3=round(-3.1)
4=round(3.5), -3=round(-3.5)
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 = 
n!

r! (n – r)!

ceil(x) - - the nearest integer ≥ x.
3=ceil(3), 4=ceil(3.1)=ceil(3.9), -3=ceil(-3)=ceil(-3.1)=ceil(-3.9)

fract(x) - - the fractional part of x, i.e. the part of abs(x) after the decimal point 
Knuth writes this a x mod 1 defined as x–floor(x)

(n
r) (n

r) (n
r)

nCr; n choose r; the element in row n column r of Pascal's

Triangle; the coefficient of xr in (1+x)n; the number of ways of
choosing r objects from a set of n different objects. n≥0 and r≥0.

F(i) is the Fibonacci series 0,1,1,2,3,5,... and L(i) is the Lucas series 2,1,3,4,7,11,....

Formula Refs Comments

F(0) = 0, F(1) = 1,
F(n+2) = F(n + 1) + F(n) - Definition of the Fibonacci series

F(–n) = (–1)n + 1 F(n)
Vajda-2, 
Dunlap-5 Extending the Fibonacci series 'backwards'

L(0) = 2, L(1) = 1,
L(n + 2) = L(n + 1) + L(n) - Definition of the Lucas series

L(–n) = (–1)n L(n)
Vajda-4, 
Dunlap-6 Extending the Lucas series 'backwards'

G(n + 2) = G(n + 1) + G(n) Vajda-3, 
Dunlap-4 Definition of the Generalised Fibonacci series, G(0) and G(1) needed

Phi = 1.618... = 
√5 + 1

2 Dunlap-63 Vajda and Dunlap use tau (τ) and Koshy uses alpha (α).
Phi and –phi are the roots of x2 = x + 1

phi = 0.618... = 
√5 – 1

2 Dunlap-65
Vajda uses –σ, and Dunlap uses –φ and Koshy uses –β
Beware! Dunlap occasionally uses φ to represent our phi = 0.61803.., but more frequently
he uses φ to represent -0.618033..

Linear Formulae

Linear relationships involve only sums or differences of Fibonacci numbers or Lucas numbers or their 
multiples.

Linear Sums of Fibonacci numbers

F(n + 3) + F(n) = 2 F(n + 2) -

F(n + 3) – F(n) = 2 F(n + 1) -

F(n + 4) + F(n) = 3 F(n + 2) -

F(n + 4) – F(n) = L(n + 2) -

F(n + 6) + F(n) = 2 L(n + 3) -

F(n + 6) – F(n) = 4 F(n + 3) -

F(n + 1) + F(n – 1) = L(n) Vajda-6, Hoggatt-18,
Dunlap-14, Koshy-5.14

F(n) + 2 F(n – 1) = L(n) (Dunlap-32)

F(n + 2) – F(n – 2) = L(n) Vajda-7a, Dunlap-15,
Koshy-5.15

F(n + 3) – 2 F(n) = L(n) possible correction for Dunlap-31

F(n + 2) – F(n) + F(n – 1) = L(n) possible correction for Dunlap-31

F(n) + F(n + 1) + F(n + 2) + F(n + 3) = L(n + 3) C Hyson(*)

Linear Sums of Lucas numbers
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L(n – 1) + L(n + 1) = 5 F(n) Vajda-5, Dunlap-13,
Koshy-5.16

L(n) + L(n + 3) = 2 L(n + 2) -

L(n) + L(n + 4) = 3 L(n + 2) -

2 L(n) + L(n + 1) = 5 F(n + 1) -

L(n + 2) – L(n – 2) = 5 F(n) -

L(n + 3) – 2 L(n) = 5 F(n) -

Linear Sum of a Fibonacci and a Lucas number

F(n) + L(n) = 2 F(n + 1) Vajda-7b, Dunlap-16

L(n) + 5 F(n) = 2 L(n + 1) -

3 F(n) + L(n) = 2 F(n + 2) Vajda-26, Dunlap-28

3 L(n) + 5 F(n) = 2 L(n + 2) Vajda-27, Dunlap-29

Golden Ratio Formulae

Here Phi (see Definitions above) is Vajda's and Dunlap's τ) 
and –phi (see Definitions above) is Vajda's σ, Dunlap's φ and Koshy's β.

Basic Phi Formulae

Phi phi = 1 Vajda page 51(3), Dunlap-65

Phi + phi = √5 -

Phi / phi = Phi + 1 -

phi / Phi = 1 – phi -

Phi – phi = 1 -

Phi = phi + 1 = √5 – phi -

phi = Phi – 1 = √5 – Phi -

Phi2 = 1 + Phi Vajda page 51(4), Dunlap-64

phi2 = 1 – phi Vajda page 51(4), Dunlap-64

Phin+2 = Phin+1 + Phin -

(–phi)n+2 = (–phi)n+1 + (–phi)n -

phin = phin+1 + phin+2 -

(–Phi)n = (–Phi)n+1 + (–Phi)n+2 -

Golden Ratio with Fibonacci and Lucas

F(n) =  Phin – (–phi)n

√5

"Binet's" Formula
Vajda-58, Dunlap-69, 
Hoggatt-page 11, Binet(1843), 
De Moivre(1718), Lamé(1844)

L(n) = Phin + (–phi)n Vajda-59, Dunlap-70

F(n) = round( Phin) ,if n≥0
√5

Vajda-62, Dunlap-71 corrected
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L(n) = round(Phin),if n≥2 Vajda-63, Dunlap-72

F(–n) = round(
–(–phi)– n

) ,if n≥0
√5

-

L(–n) = round( (–phi)– n ), n≥3 -

F(–n) = (–1)n+1round(Phin) ,if n≥0
√5

-

F(n + 1) = round(Phi F(n)),if n≥2 Vajda-64, Dunlap-73

L(n + 1) = round(Phi L(n)),if n≥4 Vajda-65, Dunlap-74

fract( F(2n) phi ) = 1 – phi2 n Knuth vol 1, Ex 1.2.8 Qu 31

fract( F(2n+1) Phi ) = phi2n–1 Knuth vol 1, Ex 1.2.8 Qu 31 

Phin = 
L(n) + F(n)√5

2
Rabinowitz-25

(–phi)n = 
L(n) – F(n)√5

2
Rabinowitz-25

Phin = Phi F(n) + F(n–1) Rabinowitz-28

Phin = F(n+1) + F(n) phi Rabinowitz-28

√5 Phin = Phi L(n) + L(n–1) -

(–phi)n = –phi F(n) + F(n–1) Rabinowitz-28

√5 (–phi)n = phi L(n) – L(n–1) -

(–phi)n = F(n+1) – Phi F(n) Vajda-103b, Dunlap-75

L(n) + √5 F(n) = 2 Phin Vajda page 125

L(n) – √5 F(n) = 2 (-phi)n Vajda page 125

Order 2 Formulae

Order 2 means these formula have a terms involving the product of 2 Fibonacci or Lucas numbers at
most.

Fibonacci numbers

F(n)2 + 2 F(n – 1)F(n) = F(2n) -

F(n + 1)2 + F(n)2 = F(2n + 1) Vajda-11, Dunlap-7, Lucas(1876)

F(n + k + 1)2 + F(n – k)2 = F(2k + 1)F(2n + 1)
a generalization of Vajda-11,Dunlap-7
Melham(1999)

F(n + 1)2 – F(n – 1)2 = F(2n) Lucas(1876)

F(n + 2) F(n – 1) = F(n + 1)2 – F(n)2 Vajda-12, Dunlap-8

F(n + 1) F(n – 1) – F(n)2 = (–1)n
Vajda-29, Dunlap-9,
Cassini's Formula(1680), Simson(1753)
special case of Catalan's Identity with r=1

F(n)2 – F(n + r)F(n – r) = (-1)n-rF(r)2 Catalan's Identity(1879)

F(n)F(m + 1) – F(m)F(n + 1) = (-1)mF(n – m)
d'Ocagne's Identity,
special case of Vajda-9 with G=F

F(n) = F(m) F(n + 1 – m) + F(m – 1) F(n – m) Dunlap-10
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F(n + m) = F(m) F(n + 1) + F(m – 1) F(n) alternative to Dunlap-10

F(n) F(n + 1) = F(n – 1) F(n + 2) + (–1)n-1 Vajda-20a special case: i:=1;k:=2;n:=n-1

F(n + i) F(n + k) – F(n) F(n + i + k) = (–1)n F(i) F(k) Vajda-20a=Vajda-18(corrected) with G:=H:=F

F(a)(Fb) – F(c)F(d) 
= (–1)r( F(a – r)F(b – r) – F(c – r)F(d – r) ) 
a+b=c+d for any integers a,b,c,d,r

Johnson FQ 41 (2003) B-960, pg 182.
Cassini, Catalan and D'Ocagne's Identities 
are all special cases of this formula

F(nk) is a multiple of F(n) -

gcd(F(m),F(n)) = F(gcd(m,n)) Lucas (1876)

F(m) mod F(n) = F(k) Knuth Vol 1 Ex 1.2.8 Qu. 32

Lucas numbers

L(2n) = L(n)2 – 2 (–1)n -

L(n + 2) L(n – 1) = L(n + 1)2 – L(n)2 -

L(n + 1) L(n – 1) – L(n)2 = –5 (–1)n -

L(2n) + 2 (–1)n = L(n)2 Vajda-17c, Dunlap-12

L(n + m) + (–1)m L(n – m) = L(m) L(n) Vajda-17a, Dunlap-11

Fibonacci and Lucas Numbers

F(2n) = F(n) L(n) Vajda-13, Hoggatt-17,
Koshy-5.13

L(n + 1)2 + L(n)2 = 5 F(2n + 1) Vajda-25a

L(n + 1)2 – L(n)2 = 5 F(2n) -

L(n + 1)2 – 5 F(n) = L(2n + 1)2 -

L(2n) – 2 (–1)n = 5 F(n)2 Vajda-23, Dunlap-25

F(n + 1) L(n) = F(2n + 1) + (–1)n Vajda-30, Vajda-31,
Dunlap-27, Dunlap-30

L(n + 1) F(n) = F(2n + 1) – (–1)n -

F(2n + 1) = F(n + 1) L(n + 1) – F(n) L(n) Vajda-14, Dunlap-18

L(2n + 1) = F(n + 1) L(n + 1) + F(n) L(n) -

L(n)2 – 2 L(2n) = –5 F(n)2 Vajda-22, Dunlap-24

5 F(n)2 – L(n)2 = 4 (–1)n + 1 Vajda-24, Dunlap-26

5 (F(n)2 + F(n + 1)2) = L(n)2 + L(n + 1)2 Vajda-25 

F(n) L(m) = F(n + m) + (–1)m F(n – m) Vajda-15a, Dunlap-19

L(n) F(m) = F(n + m) – (–1)m F(n – m) Vajda-15b, Dunlap-20

5 F(m) F(n) = L(n + m) – (–1)m L(n – m) Vajda-17b, Dunlap-23

2 F(n + m) = L(m) F(n) + L(n) F(m) Vajda-16a, Dunlap-21

2 L(n + m) = L(m) L(n) + 5 F(n) F(m) -

(–1)m 2 F(n – m) = L(m) F(n) – L(n) F(m) Vajda-16b, Dunlap-22

L(n + i) F(n + k) – L(n) F(n + i + k) =
(–1)n + 1 F(i) L(k)

Vajda-19a
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F(n + i) L(n + k) – F(n) L(n + i + k) = (–1)n F(i) L(k) Vajda-19b

L(n + i) L(n + k) – L(n) L(n + i + k) 
= (–1)n + 1 5 F(i) F(k)

Vajda-20b

5F(a)F(b) – L(c)L(d) = (–1)r( 5F(a – r)F(b – r) – L(c – r)L(d – r) ) 
a+b=c+d for any integers a,b,c,d,r

Johnson

Higher Order Fibonacci and Lucas

F(3n) = F(n + 1)3 + F(n)3 – F(n – 1)3 -

F(n)2 F(m + 1) F(m – 1) – F(m)2 F(n + 1) F(n – 1) 
= (–1)n – 1 F(m + n) F(m – n)

Vajda-32

F(n + 1)F(n + 2)F(n + 6) – F(n + 3)3 = (–1)nF(n) FQ 41 (2003) pg 142, Melham

F(n – 2)F(n – 1)F(n + 1)F(n + 2) – F(n)4 = –1
Gelin-Cesàro Identity (1880)
FQ 41 (2003) pg 142. 

F(i+j+k) =
F(i+1)F(j+1)F(k+1) + F(i)F(j)F(k) – F(i–1)F(j–1)F(k–1)
for any integers i,j,k

Johnson's (6)

L(n) + √5 F(n) k

=
L(kn) + √5 F(kn)

2 2
De Moivre Analogue

L(n) – √5 F(n) k

=
L(kn) – √5 F(kn)

2 2
De Moivre Analogue

(F(n)2 + F(n+1)2 + F(n+2)2 )2 = 2 ( F(n)4 + F(n+1)4 + F(n+2)4 ) Candido's Identity (1951)
FQ 42 (2004) R S Melham, pgs 155-160

L(5n) = L(n) (L(2n) + 5F(n) + 3)( L(2n) – 5F(n) + 3), n odd Aurifeuille's Identity (1879)
FQ 42 (2004) R S Melham, pgs 155-160

G Formulae

G(i) is the General Fibonacci series. It has the same recurrence relation as Fibonacci and Lucas, namely
G(n+2) = G(n+1) + G(n) for all integers n (i.e. n can be negative), but the "starting values" of
G(0)=a and G(1)=b can be specified. It therefore includes both series them both as special cases. To
make it clear which starting values for G(0)=a and G(1)=b are being used, we write G(a,b,i) for G(i).
Hoggatt and others use the letter H for series G. For example:

If G(0)=0 and G(1)=1 we have 0,1,1,2,3,5,8,13,.. the Fibonacci series, i.e. G(0,1,i) = F(i); 
G(0)=2 and G(1)=1 gives 2,1,3,4,7,11,18,.. the Lucas series, i.e. G(2,1,i) = L(i);

Basic G Formulae

G(n + 2) = G(n + 1) + G(n) Vajda-3, Dunlap-4

G(n) = G(0) F(n – 1) + G(1) F(n) -

G(–n) = (–1)n (G(0) F(n + 1) – G(1) F(n)) -

G(n + m) = F(m – 1) G(n) + F(m) G(n + 1) Vajda-8, Dunlap-33

G(n – m) = (–1)m (F(m + 1) G(n) – F(m) G(n + 1)) Vajda-9, Dunlap-34

L(m) G(n) = G(n + m) + (–1)m G(n – m) Vajda-10a, Dunlap-35

F(m) (G(n – 1) + G(n + 1)) = G(n + m) – (–1)m G(n – m) Vajda-10b, Dunlap-36

G(m) F(n) – G(n) F(m) = (–1)n + 1 G(0) F(m – n) Vajda-21a 

G(m) F(n) – G(n) F(m) = (–1)m G(0) F(n – m) Vajda-21b 

G(m+k) F(n+k) + (–1)k+1 G(m) F(n) = F(k) G(m + n + k) Howard(2003)
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Order 2 G Formulae

These formulae include terms which are a product of two G numbers either from the same G series of
from two different G series i.e. with different index 0 and 1 values. Where the series may be different
they are denoted G and H e.g. special cases include G = F (i.e. Fibonacci) and H = L (i.e. Lucas), or they
could also be the same series G=H.

G(n + i) H(n + k) – G(n) H(n + i + k) = (–1)n (G(i) H(k) – G(0) H(i +
k))

Vajda-18 (corrected)

G(n + 1) G(n – 1) – G(n)2 = (–1)n (G(1)2 – G(0) G(2)) Vajda-28

√5 G(n) = (G(1) + G(0) phi) Phin + (G(0) Phi – G(1)) (–phi)n Vajda-55/56, Dunlap-77

G(i+j+k) = F(i+1)F(j+1)G(k+1) + F(i)F(j)G(k) – F(i–1)F(j–1)G(k–1)
for any integers i,j,k

Johnson's (39a)

4G(i)2G(i+1)2 + G(i–1)2G(i+2)2 = ( G(i)2 + G(i+1)2 )2 see Fibonacci Numbers as the sides of Pythagorean 
Triangles

Summations

This section has formulae that sum a variable number of terms.

Fibonacci and Lucas Summations

These formulae involve a sum of Fibonacci or Lucas numbers only.
n

i=0

F(i) = F(n + 2) – 1 Hoggatt-11, Lucas(1876)

n

i=0

L(i) = L(n + 2) – 1 Hoggatt-12

n

i=a

F(i) = F(n + 2) – F(a + 1) -

n

i=a

L(i) = L(n + 2) – L(a + 1) -

n

i=1

F(2i) = F(2n + 1) – 1, n≥1 Hoggatt-16, Lucas(1876)

n

i=1

F(2i – 1) = F(2n), n≥1 Hoggatt-15, Lucas(1876)

n

i=1

L(2i–1) = L(2n)–2 -

n

i=1

 2n – i F(i – 1) = 2n  – F(n + 2) Vajda-37a(adapted),
Dunlap-42(adapted)

n

i=0

(–1)i L(n – 2i) = 2 F(n + 1) Vajda-97, Dunlap-54

Summations with fractions

∞ F(i  = 2 Vajda-60, Dunlap-51
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i=0
2i

∞

i=0

L(i)

2i
 = 6 -

∞

i=0

F(i)

ri
=

r

r2 – r – 1
-

∞

i=0

L(i)

ri
= 2 +

r +2

r2 – r – 1
-

∞

i=1

i F(i)

2i  = 10 Vajda-61, Dunlap-52

∞

i=1

i L(i)

2i  = 22 -

∞

i=1

1

F(2i)
 = 4 – Phi = 3 – phi Vajda-77(corrected), Dunlap-53(corrected)

Order 2 summations

2n

i=1

F(i) F(i – 1) = F(2n)2 Vajda-40, Dunlap-45

2n

i=1

L(i) L(i – 1) = L(2n)2 – 4 -

2n+1

i=1

F(i) F(i – 1) = F(2n +1)2 – 1 Vajda-42, Dunlap-47

2n+1

i=1

L(i) L(i – 1) = L(2n +1)2 – 5 -

n–1

i=0

F(2i + 1)2 = 
F(4n) + 2n

5
Vajda-95

n–1

i=0

L(2i + 1)2 = F(4n) – 2n Vajda-96

n

i=1

F(i)2 = F(n) F(n + 1) 
Vajda-45, Dunlap-5,
Hoggatt-13, Lucas(1876),
Koshy-77
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n

i=1

L(i)2 = L(n) L(n + 1) – 2 Hoggatt-14

2n-1

i=1

L(i)2 = 5 F(2n) F(2n - 1) -

5

n

i=0

F(i) F(n – i)
= (n + 1) L(n) – 2 F(n + 1)

= n L(n) – F(n)
Vajda-98, Dunlap-55

n

i=0

L(i) L(n – i)
= (n + 1) L(n) + 2 F(n + 1)

= (n + 2) L(n) + F(n)
Vajda-99, Dunlap-56

n

i=0

F(i) L(n – i) = (n + 1) F(n) Vajda-100, Dunlap-57

n

i=1

L(2i)2 = F(4n + 2) + 2n – 1 Vajda page 70

G Summations

n

i=1

G(i) = G(n + 2) – G(2) Vajda-33, Dunlap-38

n

i=a

G(i) = G(n + 2) – G(a + 1) -

n

i=1

G(2i – 1) = G(2n) – G(0) Vajda-34, Dunlap-37

n

i=1

G(2i) = G(2n + 1) – G(1) Vajda-35, Dunlap-39

n

i=1

G(2i) –

n

i=1

G(2i – 1) = G(2n – 1) + G(0) – G(1) Vajda-36, Dunlap-40

n

i=1

2n – i G(i – 1) = 2n – 1( G(0) + G(3) ) – G(n + 2) Vajda-37(variant),
Dunlap-41(variant)

4n+2

i=1

G(i) = L(2n + 1) G(2n + 3) Vajda-38, Dunlap-43

2n

i=1

G(i) G(i – 1) = G(2n)2 – G(0)2 Vajda-39, Dunlap-44

2n+1

i=1

G(i) G(i – 1) = G(2 n + 1)2 – G(0)2 – G(1)2 + G(0)G(2) Vajda-41, Dunlap-46
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n

i=1

G(i + 2) G(i – 1) = G(n + 1)2 – G(1)2 Vajda-43, Dunlap-48

n

i=1

G(i)2 = G(n) G(n + 1) – G(0) G(1) Vajda-44, Dunlap-49

∞

i = 0

G(a, b, i)

ri = a + 
a + b r

r2 – r – 1

Stan Rabinowitz, 
"Second-Order Linear Recurrences" card, 
Generating Function
special case (x=1/r, P=1, Q=-1)

∞

i=0

i G(a, b, i)

ri

r (b r2 – 2 a r + b – a)
= 

(r2 – r – 1)2
-

Summations with Binomial Coefficients

n

i=1

(n–i
i–1) = F(n) -

∞

i=0

(n–i–1
i ) = F(n) Vajda-54(corrected),

Dunlap-84(corrected)

n

i=0

(n+1
i+1) F(i) = F(2n + 1) – 1 Vajda-50, Dunlap-82

2n

i=0

(2n
i )F(2i) = 5n F(2n) Vajda-69, Dunlap-85

2n

i=0

(2n
i )L(2i) = 5n L(2n) Vajda-71, Dunlap-87

2n+1

i=0

(2n+1
i ) F(2i) = 5n L(2n + 1) Vajda-70, Dunlap-86

2n+1

i=0

(2n+1
i ) L(2i) = 5n + 1 F(2n + 1) Vajda-72, Dunlap-88

2n

i=0

(2n
i )F(i)2 = 5n – 1 L(2n) Vajda-73, Dunlap-89

2n

i=0

(2n
i )L(i)2 = 5n L(2n) Vajda-75, Dunlap-91
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2n+1

i=0

(2n+1
i ) F(i)2 = 5n F(2n + 1) Vajda-74, Dunlap-90

2n+1

i=0

(2n+1
i ) L(i)2 = 5n + 1 F(2n + 1) Vajda-76, Dunlap-92

∞

i=0

5i ( n
2i+1) = 2n-1 F(n) Vajda-91

∞

i=0

5i ( n
2i)  = 2n-1 L(n) Vajda-92

k

i=0

(k
i) F(n)iF(n–1)k–iF(i) = F( kn ) Rabinowitz-17

k

i=0

(k
i) F(n)iF(n–1)k–iL(i) = L( kn ) Rabinowitz-17

Summations with Binomials and G Series

n

i=0

(n
i)G(i) = G(2n) Vajda-47, Dunlap-80

n

i=0

(n
i)G(p – i) = G(p + n) Vajda-46, Dunlap-79

n

i=0

(n
i)G(p + i) = G(p + 2n) Vajda-49, Dunlap-81

n

i=0

(–1)i(n
i)G(n + p – i) = G(p – n) Vajda-51, Dunlap-83

Other Formulae

F(n) = 

floor((n-1)/2)

k=0

(3 + 2 cos 
2k%)n

-

Hyperbolic Functions

Here we use g for ln(Phi), the natural log of Phi. cosh(g)=√5 / 2. There are several derivations of formulae
above using hyperbolic functions in chapter XI of Vajda.

F( 2n ) = 2 sinh( 2ng ) from Binet's formula
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√5

         =
sinh( 2ng )

cosh( g )

F( 2n+1 ) =
2

cosh( (2n+1)g )
√5

from Binet's formula

         =
cosh( (2n+1)g )

cosh( g )

L( 2n) = 2 cosh( ng ) from Binet's formula

L( 2n+1 ) = 2 sinh( ng ) from Binet's formula

Complex Numbers

F(n) = 
2 i1–n

sin(–i n ln( i Phi) )
√5

from Rabinowitz-7 corrected

F(n) = 
2 i– n

sinh(n ln( i Phi) )
√5

from Rabinowitz-7 corrected

L(n) = 2 i– n cos(–i n ln( i Phi) ) from Rabinowitz-7 corrected

L(n) = 2 i– n cosh( n ln( i Phi) ) from Rabinowitz-7 corrected
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